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Summary

Nonographic design procedures are developed for a metallic cylinder (eg
a rocket motor case) circumferentially reinforced with a pre-strained
fibre overwind with viscoelastic properties. Techniques for calculating
the pressure for first yield in the metallic case and the optimum winding
conditions for both short- and long- times are presented, together with a
technique for determining the maximum fibre stress.

Design examples are presented with each nomogram in turn and the graphical
results are compared with exact numerical results.
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1 INTRODUCTION

Recent work (Refs 1-4) on the stress states in metallic cylinders circum-
ferentially reinforced with a prestrained fibre overwind has involved analyses
of the initial winding process, the effects of different Storage temperatures,
pressurisation and viscoelastic relaxation of the fibre overwind. The
work has particular relevance to the rocket-motor case, and much attention
has been given to the effects of the material and design variables on the
pressure required for the initiation of yield in the reinforced cylinder of
such a case.

The range of choice through the several design variables is considerable,
and it is not easy to assess directly the relative importance of the effects
of changes in these variables. It is in these circumstances that the use
of nomograms for the representation and interpretation of the design
equations offers very considerable advantages, which far outweigh the
small inaccuracies usually associated with graphical solution techniques.

In this report design procedures are developed for the stress analysis of
fibre-reinforced metallic rocket-motor cases. These procedures are pre-
sented graphically in surh a way that the effects of changes in the
variables, and their relative importance, can be easily seen. It should
be noted, however, that the procedures presented are general, in that
they may be applied to any fibre-reinforced cylinder subjected to internal
pressure. The effects of the overwind variables (including viscoelastic
relaxation) and pressurisation are taken into account, but thermal effects
have been omitted. Experience has shown that the small changes in the
yield pressure resulting from typical temperature changes do not warrant
the extra complexities in the design charts.

Two of the five nomograms presented are concerned with the determination
of the pressure for the initiation of first yield in the metallic cylinder,
two with an optimisation analysis, and the final nomogram evaluates the
maximum fibre stress. In the last nomogram viscoelastic effects have
been neglected, since numerical results have shown conclusively that the
maximum fibre stress occurs immediately after winding in the outermost
layer.

Design examples are presented with each nomogram. The accuracy of the
solutions are assessed by comparing graphical results with exact numerical
results.

2 ELASTIC ANALYSIS

2.1 Yield Initiation Predictions

2.1.1 Theory

It is a requirement that the rocket-iotor case must withstand all
operational loads without failure or excessive distortion. Although aero-
heat and inertia effects may contribute, the predominant load will always
be the firing pressure. The maximum permissible pressure is defined as
that for the onset of first yield in the metallic case.' Although such a
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definition does not take into account the strength reserves available in

the case after the initiation of yield, this definition will be adopted
here.

It has been shown (Ref 3) that for a thin-walled overwound motor case of

radius R, overwound with n elastic fibre layers with an initial winding
strain e and subjected to the applied firing pressure p, the resulting
circumferential strelses in the i'th fibre layer and the case,
aefpi,n) and oecp 

n ) 
respectively, are given by

° ifP',n) . GwEf{l-AFi(An)) + A {- PA ( R }

aeptf(l+An) 2 =R

,2..,n()
and

ocp 
( n )  - -EcCwAFI(A,n) + P {I+ -- - (1---_ )} 2

(2)

where

EftfAm--
Ectc (3)

and

n
Fi(A,n) - E I

(4)

In the above equations Ef and Ec denote respectively the Young's modulus

of the fibre and case, tf the effective thickness of a single fibre layer
and tc the thickness of the case, Re the effective nozzle radius (Ref 2)
and vc the Poisson's ratio of the case material. The corresponding

axial stress component in the case follows from the transverse equilibrium

equation, ie

(R2-Re2)
OZcp " p 2Rt C

Once the stress components in the metallic case (Eqns 2 and 5) are known,

the pressure for the onset of yield can be calculated using the von ltises
yield criterion, the most appropriate for the case materials under

consideration. If the radial stresses are assumed negligible relative to
the circumferential and axial stresses, the yield criterion (Ref 5)
reduces to the form

( a0cp(n))2 + ( 0zep)2 - V~ cp(n) Zcp , '2
zcp ~ Zcp- my(6)
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where oy, is the uniaxial yield stress of the case material. Equations
2, 5 and 6 form the basis for nomogram construction.

If used in their present dimensional form, these equations would result

in nomograms of unacceptable complexity. However, if the equations are

changed into a non-dimensional form the number of variables is reduced
and, as a consequence, their graphical representation is considerably
simplified.

The following non-dimensional variables are introduced:

B - An (7)

X - 1-Re
2
/R

2  
(8)

SP/Pymax " .p/3R1.a4tcoy 
(9)

-Ec owl/cy
(10)

ew - o8IIay - vAF1(An) (11)

where o is the circumferential case stress due to winding,

AP(n) - (n)/,Y
Oft yrc (12)

0zcp - Ozcp/Oy (13)

In Equation 9 the quantity Pyax denotes the maximum attainable yield

pressure for the reinforced motor (Ref 2), as given by the equation

4t
Pymax ' 3R

(14)

For analytical purposes it is convenient to introduce the approximation

AF1(A,n) * ln(l+An)

(15)

so that Equation 11 can be expressed in terms of the variable B, that is

5
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vo 4*,ln(1+0)
(16)

With these non-dimensional variables, Equations 2, 5 and 6 can be expressed
in non-dimensional form as

a n)+ 2~~IB (2+ OA)

(17)
.2

zcp 7

(19)

where, in Equation 17, it has been assumed that vc 1 1/3, a typical
value for most suitable case materials.

The variables B and X are now combined by introducing the auxiliary

variable *, where

.LA
* - {2+ 3-}/((+B>.

(20)

ro that Equation 17 reduces to the four-variable equation

Cr (n)- , + 2 *o
Oc p Ow 71

(21)

Once the governing equations have been obtained in non-dimensional form
(Eqns 18, 19 and 21), in order to predict the pressure for the ovset of

Kield (ie p-p ) it is necessary to eliminate the quantities a ?_n and
OZcP from Equation 19 in favour of py using Equations 21 and
respectively, to give the quadratic

$2 4(1+#2-#) +A$ 2 (2 *a)+ ~2- 1- 0
73y y 7-3 SOWa v C Ow

(22)

Once Py has been obtained, the yield pressure py readily follows from
Equation 9.

6
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Equition 22 can now be represented graphically by plotting the variation
of a9 with # for various py values, typically from 0 to I in increments
of 0.1. This is depicted in the central portion of Figure I.

This graphical technique for evaluating py is in terms of the variable
combinations o~w and #. It Is now necessary to extend the Equation
22 plot to enable the evaluation of A to be carried out in terms of the
more fundamental variables *, 0 andp. From Equation 16 it can be
seen that the variable S is a simple nultiplication of # and
ln(l+B); this equation can therefore be represented by the 'z' type
nomogram (Ref 6) shown to the left of the central plot in Figure 1.

By contrast, the graphical determination of # necessitates a rearrangement
of the governing Equation 20 so that it complies with an alignment chart
(Ref 6) of the form

fl(X) + f2 (0)f3 (#) = f4 (B)
(23)

where the functions represent

fl(X) - -2/X

f2(0) - 1 + B
(24)

f 3(0) -

f4 (B) - 0/3

The Equation 23 nomogram is shown in the lower portion of Figure I.

The range of the variables associated with these nomograms must be
chosen with care to ensure that the final design chart can be used for
all practical applications. For fibre-reinforced rocket motor cases
these ranges, together with those to be used in subsequent nomograms, are
presented in Table 1.

Since the variable ^ is common to both Equations 16 and 22, and,
furthermore, since the variable # is common to Equations 20 and 22, it
follows that the three nomograms developed can be combined in such a way
that the transfer of data from one nomogram to another is, in general,
avoided. This reduces reading errors and, omitting constructional details,
results in the simple design chart presented in Figure 1.

There are four fundamental variables in the design process embodied in
Figure 1, , A, pv and B. Any one of the first three (ie k or A
or Py) can be readily 'read' from the Figure 1 design chart provided the
other three are known. However, because the variable 5 is represented in
two of the graduated loci in the design chartA it cannot be obtained
directly in terms of the variables #w, X and py. Nevertheless, a trial-
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and-error graphical approach for B is feasible. The problem is resolved
if ov (ie the case stress induced by winding) can be specified together
with y and A; in these circumstances the solution proceeds as follows:

a. Determine the # value corresponding to the intersection

of the specified oew and p; values in the oew - grid depicted
in the central portion of Figure 1.

b. Determine the required B value from the Equation 23
nomogram (lower portion of Fig 1) using the calculated # and
specified A values.

c. Obtain * and thence the winding strain which satisfies
the prescribed problem using the left-hand side of Figure 1.

2.1.2 Graphical Design Example

For the purposes of illustration Figure 1 is used to evaluate the yield
pressure, pi. for a sample motor case (Refs 2&4) in terms of *,, A and
0 (see Tab 3) derived from the details given in Table 2. The design
procedure is as follows:

a. Using the left hand side of Figure 1 construct a straight
line to pass through the derived values of 4k = 0.22 anj
B - 1.82. Mark the intersection of this line with the vaw
scale.

b. Using the lower right hand portion of the nomogram
construct a second straight line to pass through B -1.82 and
A - 0.5. Mark the intersection of this line with the
scale.

c. Project two lines, the first horizontally and the second
vertically, across the aow - grid from the intersections

obtained in a. and b. respectively.

d. Evaluate the 'y value corresponding to the intersection
of the line drawn in c. and then py from Equation 9.

For the example considered, Figure 1 gives a yield pressure value of

67.2HPa. This is in good agreement with the numerical value of 68 .5Mpa.

2.2 Optimisation Analysis

2.2.1 Theory

In the design of rocket motor cases it is a requirement that the structure
is manufactured to its optimum strength configuration. For overwound
motor cases this configuration will clearly be a function of the pre-
strain induced during winding, the motor rigidity resulting from the
number of applied fibre layers and the mechanical properties of the
constituent materials. A previous analysis (Ref 2) has shown that there

8
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exists a maximum first yield pressure which is independent of the winding
strain, the number of applied fibre layers and the physical properties of
the fibre.

For the von Mises yield criterion this maximum is given by Equation 14.
The maximum is independent of ew and n, (see Ref 2) but the number of
layers required to achieve it is inversely related to the winding strain,
and vice versa. For a particular motor (Ref 2) this trend is depicted by
the dotted line in Figure 2. For the von Mises yield criterion the
optimum n values for a prescribed winding strain %, and vice versa, is
obtained (Ref 2) as the solution to the equation

4R_ __+An(Zv__) 1 3_EcAFl(An)

ye 
(25)

For a prescribed n value Equation 25 can be easily solved for the optimum
winding strain, but the determination of the optimum number of fibre
layers for a prescribed winding strain would generally require computer
assistance. This problem can be resolved, however, if Equation 25 is
used as the basis for an optimisation nomogram.

As in Section 2.1.1, Equation 25 can be simplified if a non-dimensional
approach is adopted. Using Equations 7 to 16, Equation 25 modifies to:

4 -1- i /3*wln(l+$)

(26)

where, as previously, vc - 1/3.

The above equation can now be written more conveniently as

fl(w) + f2 (X)f3(0) - f4 (B)
(27)

where

fl(#V) - -/3*w

f2(M)- 4 - 1
(28)

f3(B) - 1/{(I+S)ln(1+B))

f4() - S/{3(1+B)ln(l+B))

The resulting nomogram consists of two graduated straight loci representing
* and X, and a graduated B locus which takes the form of a curve. The
nomogram is depicted in Figure 3 with constructional details omitted.

9
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2.2.2 Graphical Design Example

For the purposes of illustration Figure 3 is used to determine the optimum
winding strain for the Table 2 motor in terms of the derived variables 0

and X (see Tab 3). The procedure is as follows:

a. Draw a straight line to pass through the values of 1.82
on the 0 scale and 0.5 on the X scale.

b. Determine the *w value (1.26) corresponding to the

intersection of the a. line and the graduated +w locus.

Once *w has been determined, the optimum winding strain follows from a
rearrangement of Equation 10. In this example Figure 3 gives an optimum
winding strain of 8.4 x 10

- 3
. This is in good agreement with the numerical

value of 8.5 x 10
- 3

. The maximum yield pressure of 92.OMPa corresponding
to this optimum is calculated from Equation 14. This is 36.9% greater
than the yield pressure calculated in Section 2.1.2.

In the above analysis the optimum winding strain has been derived

theoretically. No attempt has been made to assess whether the case could
support the initial stress without yielding. This can be easily checked

using Figure 4 where the winding limit condition, S = 1 - #wln(l $)
(see Eqn 11), for the variable ranges given in Table 1 is plotted. If the
resulting (*w,B) coordinate value lies to the right of the line the
case has deformed plastically during winding and the foregoing analysis
is void. Furthermore, an optimised configuration cannot be achieved, a

condition associated with laree throat diameters and small inertia loads.

3 VISCOELASTIC AMLYSIS

In the preceding section all modulus terms were linear elastic, and the
effects of fibre viscoelastic relaxation were neglected. As a consequence,

closed-form analytical stress solutions were obtained for the fibres and
case from which the required nomograms were constructed.

For short times, ie directly after winding, recent work has shown that
these equations provide a simple and reliable method for the elastic
stress analysis of overwound rocket notor cases. For longer times,
however, these solutions may be in error. Fibre viscoelastic relaxation
may have a significant effect on the case stress immediately before firing

and, as a result, the first yield pressure. Unfortunately, for all but
the most trivial of examples, numerical methods are required to solve the
resulting viscoelastic equations (Ref 4- Nevertheless, analytical

solutions have been obtained for the fully relaxed viscoelastic condition
(Ref 4). Since these solutions are independent of the detailed nature of

the relaxation spectrum (viscoelastic effects are introduced only through
the long-term fibre relaxation modulus Ef(-)) the resulting equations are
valid for all viscoelastic problems pertaining to this study.

Nomograms for the fully relaxed condition are therefore developed in this
section.' For intermediate times numerical methods (Ref 4) must be
employed.

10
UNLIMITED



UNLIMITED

3 .1 Yield Initiation Predictions

3.1.1 Theory

For rocket motor cases subjected to instantaneous pressure loads held for

infinitesimally small periods of time the effects of fibre viscoelastic
relaxation on the pressure-induced strains are usually neglected. Hence,

the pressurisation analysis reduces to an elastic problem, with the
pressure-induced stresses and strains related through the conventional
Hookean equations.

Omitting details, and u~ing the notation previously defined, the long-
term case stress a (n (-) on pressurisation following complete
viscoelastic relaxation in the fibre can be deduced from Reference 4.

0
ecp (. ) EceAF( A(-)n+Ef(-)/Ef(O) I= -EckFI(An){ +A(-)n

+nvA (JRe
2

+ pR {I+- (i
-
e)

tc(l+An) 2 R
(29)

where

A(-) - Ef(-)tf

Ectc
(30)

As before, it is convenient to non-dimensionalise Equation 29 using
Equations 7 to 16 to give

(n)+ 2p

a c -) /3),(1+B+ {2+!?A}

(31)

where

A (n)(.) Ocp(n)()/
09cp 8 p y 

(32)

Gew(-) - *,ln(l+8){-1+-8
a (33)

ot- Ef(-)/Ef(O)

(34)

and # is defined by Equation 20. As before vc - 1/3. The corresponding

non-dimensional component of axial stress is again given by Equation 18

11
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and since the case remains linear elastit: the yiql criterion is given,
as before, by Equation 19 wtth the quantity a pnI appearing in that
equation replaced by Sec (n)(-). Equations 1. 19 and 31 provide the
basis for nomogram constuction.

Equations 18 and 31 can now be used to eliminate azc and a p(n)(.)
respectively from the von Hises yield criterion, Eqution 19, in favour
of ^y in order to predict the pressure for the onset of yield. The
resulting equation is:

y2 41+,2_, + ^ 2 {-2i()W (-))

+ ()2 1 = 0

(35)

On solution, the positive root for $y is then substituted in Equation 9
to obtain the yield presgire py.

The graphical representation of Equation 35 now follows as for Equation 22,
that is, the variation of ow(w) with # is plotted for various py values
to give the plot depicted in the central portion of Figure 5.

Since the above analysis has been derived in terms of the variable
combinations %,,(-) and #, it is necessary, as before, to construct
additional nomograms so that the required design chart can be used in
conjunction with the fundamental variables 4, B, a and X. Although
the graphical determination of # readily follows from the Equation 23
nomogram, the graphical determination of the effects of complete fibre
relaxation on the case pre-stress, av(m), cannot be established from
the 'z' type nomogram shown to the left of the central plot in Figure
1, since, when viscoelastic effects are introduced, the case pre-stress
becomes a function of both the long- and short-term fibre modulus values
(see Eqn 33). Under these conditions, the effects of complete fibre
relaxation on 'aew(-) may be graphically determined from a 'proportional'
type nomogram (Ref 6) of the form

fl(a,O) f3(Ow)
f 2 (0) f4(U(-))

(36)

where the functions represent

fl(0,6) - 1/a + A - Y

f2 (B) - (I+)ln(1+B)
(37)

f3(l') =

f4(00(-)) =  (-)

12
UNLIMITED



U NLIMITED

As before, the three independent nomograms can be combined through their
common loci. The final design chart is shown in Figure 5 with constructional
details omitted.

In contrast to Figure 1 the design process embodied in Figure 5 is now
in terms of five fundamental variables #, X, 'y, a and 0. Ibwever, the
variable B is again represented by two of the graduated loci in the design
chart. (Furthermore, y is a function of B.) It follows therefore, as
before, that B cannot be 'read' directly from the design chart in terms of
the variables #, py, X and a and that a trial-and-error solution procedure
is again required. Nevertheless, this problem can be resolved if the fully
relaxed case pre-stress, Oew(-), is specified together with 1, py and a so
that the solution procedure follows in a manner similar to that described
in Section 2.1.1.

3.1.2 Graphical Design Example

To illustrate the use of Figure 5 the fully relaxed viscoelastic yield
pressure value is calculated for the Table 2 motor using the derived
variables given in Table 3. However, as Figures 1 and 5 are identical,
except for the case pre-stress nomogram, only the use of the case pre-
stress nomogram will be discussed here. The procedure is as follows:

a. Using the left-hand side of the nomogram, construct an
index line to pass through 1.82 on the B scale and 3.82 on the
y scale. Hark the intersection of this line with the ungraduated
diagonal.

b. From the intersection established in a. draw a second
straight line to cut the *w scale at 0.22. Extend to cut the
aqw(-) scale at 0.17. This is the non-dimensional fully
relaxed viscoelastic case pre-stress.

c. Having established avw(-) use steps b. to d. of Section
2.1.2 to calculate the yield pressure as 62.98HPa. This compares
favourably with the numerical value of 62.4HPa.

The effects of viscoelastic relaxation can now be assessed. By comparing
the yield pressure values obtained from the elastic and fully relaxed
viscoelastic conditions (Figs l&5) for the Table 2 motor case, ie 67.2HPa
and 62.9MPa respectively, it can be seen that the yield pressure has
decreased by approximately 6.5%. It should be noted, however, that the
yield pressure may not always decrease. As has been reported elsewhere
(Ref 4), depending on the initial winding configuration, the yield pressure
may increase, decrease or increase to a maximum and then decrease with fibre
relaxation. bvertheless, the maximum attainable yield pressure will
always be given by Equation 14.

An insight into which of these three yield pressure trends a motor will
exhibit can be obtained from a consideration of the AO - # grids in
Figures 1 and 5. If the relevant point lies to the right of the py 1
curve in Figure 1 the yield pressure will always decrease with fibre
relaxation, whereas the opposite is true if the intersection lies to the

13
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left of the p = I curve in Figure 5. But, if the intersection lies to
the left of tKe -= I curve in Figure 1 and then lies to the right of
the y - I curve in Figure 5, the yield pressure will have increased to the
maximum and then decreased with fibre relaxation. For design purposes
the latter trend is preferable, provided the elastic and fully relaxed
viscoelastic yield pressure values are equal. Otherwise, depending upon
initial winding conditions, the yield pressure value at either the elastic
or the fully relaxed viscoelastic condition may take an unacceptably low
value.

3.2 'Optimisation Analysis

3.2.1 Theory

In the preceding section it was shown that the yield pressure depends on
fibre relaxation. It follows therefore that the elastic optimisation
nomogram (Fig 3) is not valid when viscoelastic relaxation occurs.

This is illustrated in Figure 2, where the first yield pressure values
are plotted against the number of applied fibre layers for a particular
motor (Ref 4) for the elastic and fully relaxed conditions. It can be
seen that fibre relaxation is accompanied by a shifting of the yield
pressure curve so that the number of fibre layers required for the
fully relaxed optimum configuration is greater than that required for the
elastic analysis. Furthermore, for the elastic optimised motor the yield
pressure in the fully relaxed condition will be lower than that given by
Equation 14.

From a previous viscoelastic analysis (Ref 4) it can be shown, after some
manipulation, that when viscoelastic effects are introduced the optimisation
equation for the fully relaxed condition becomes

4R 2  1 V3wEAFl(A,n) l+An

_R 1+An( 2vc4l)) a +Ane Oy " -(O +An
Ef(-)

(38)

For a prescribed number of fibre layers Equation 38 can be solved for the
fully relaxed optimum winding strain. Conversely, the determination of
the optimum number of fibre layers, for a prescribed winding strain,
would generally require computer assistance. It is therefore necessary
to represent Equation 38 graphically.

Using Equations 7 to 16 and Equations 32 to 34 and setting vc - 1/3,
Equation 38 reduces to the following non-dimensional form:

{_4 -1- }1. 1 3- n(1+0)_l+0

a (39)

14
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which on subsequent rearrangement corresponds to an alignment nomogram
(Ref 6) of the form

fl(C) + f2(4w)f3(A,B) - f4()

(40)

where the functions represent

fi(a) - 1/C

f2(*W) -*
(41)

: f3(x,8) - {13(1+B)2ln(l+B))ff -1-B}

f4(S) = -B

This is analogous to Equation 27. The resulting nomogram will therefore
consist of two graduated parallel loci for k and a and a series of
graduated curved B loci, each for a prescribed X value.

In principle the resulting nomogram will graphically represent Equation
39. In practice, however, experience has shown that unacceptable reading
errors can occur for extreme variable combinations. To resolve this
problem it is necessary to transform the Equation 40 nomogram into an
alternative form so that the resulting design chart possesses greater
practical utility.

Using determinant theory (Ref 7) and omitting the details it can be shown
(see Annex A) that the required nomogram can be obtained from the basic
determinant

-1/fl(M) 0 1

0 -1/f2 (*w) 1 = 0
(42)

-1/f4 (0) -f3(A,O)/f4(0) 1

This corresponds to a nomogram which consists of a locus for a
coincident with the x-axis, a locus of * coincident with the y-axis
and a series of 0 curves, each curve representing a unique A value.
Furthermore, the a and # axes are orthogonal. The resulting nomogram is
presented in Figure 6 with the constructional details omitted.

Alternative transformatinns of Equation 40 can be derived leading to
different determinant forms, but these have not led to significantly
better nomographic representations.

15
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3.2.2 Graphical Design Example

For the purposes of illuxtration, Figure 6 is used to determine the
winding strain necessary to obtain the optimised configuration at the
fully relaxed condition for the Table 2 motor in terms of the derived
variables given in Table 3. The procedure is as follows:

a. Locate a point within the X - 0 grid corresponding to the
intersection of B = 1.82 and X = 0.5.

b. From this point draw a straight line to pass through
0.5 on the n scale to obtain the required 4w value.

For the example considered, Figure 6 gives a winding strain of 1.17 x
10- 2, as compared to the numerical value of 1.15 x 10-2. These values are
in good agreement. If the elastic and fully relaxed viscoelastic optimum
winding strains are compared (8.46x109- and 1.17x10- 2 respectively) it can
be seen that the latter is 38.3% greater than the former. Consequently,
it may not be possible to obtain a fully relaxed optimised configuration;
the pre-stress induced during winding may exceed the elastic limits of
the case material. This condition can, as previously, be easily checked
using Figure 4. If the relevant point lies to the right of the winding
limit condition line, ie oaw - 1 - #wln(1+B) (see Eqn 11), the case
has deformed plastically during winding and the foregoing analysis is
void.'

4 MAXIMUM FIBRE STRESS

4.1 Theory

In the foregoing sections, graphical design procedures were developed to
determine the maximum permissible applied pressure and the optiised
winding configuration for both the initial elastic and fully relaxed
conditions. In these analyses the maximum pressure calculation has been
based on the pressure for first yield in the case material, and the
magnitude of the fibre stresses associated with this pressure has not
been studied. In the present application it is likely that this approach
will provide a satisfactory design solution, since the ultimate tensile

strength of the fibre overwind is very such greater than the yield stress
of the case.. Pbvertheless, care must be taken at the exploratory stages
of the design to ensure that the fibre stresses do not exceed prescribed
safety values.

A previous study (Ref 2) has shown that the maximum fibre stress occurs
in the outermost fibre layer directly after winding. It follows therefore
from Equation 1 that the maximum fibre stress 0efwx is given approxi-
mately by

a A c+ ( 1-I.- Re2)
fux r If +An tf(l+An) 6 B1T(3

(43)
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where, as previously, v, - 1/3. It should be noted that the above
equation is also valid for the viscoelastic fibre with Ef repleced by
Ef(O).

Again it is convenient to adopt a non-dimensional approach. Using
Equations 7 to 16 it can be shown that Equation 43 reduces to:

a 2 2

(44)

where 8 denotes the modulus ratio Ef/Ec and 
0
efmax is the non-

dimensional maximum fibre stress Oefmax/Oy. In Equation 44

the approximation

1 - A.+ _

!+An (45)

has been used.

One of the most simple techniques (Ref 7) for dealing with equations of the
above form is to introduce an additional auxiliary variable as follows.

Ofmax (4+K)6)

where

75 (1+0) A I
(47)

Both of these equations can now be readily represented by grid nomograms,
Equation 46 by an alignment (Ref 6) nomogram and Equation 47 by a '1' type
(Ref 6) nomogram. The complete nomogram is then obtained by combining these
two independent nomograms in such a way that the locus r is common to
both. It should be noted, however, that if a conventional construction
technique is used for the Equation 46 nomogram, the desired grid will not

be obtained, since the effect of varying A is merely to adjust the
gradations on the 0 scale, not to alter its spatial position relative to
the nomogram as a whole. Nevertheless, a pseudo-grid can be constructed
whereby the 0 scales, for each unique A value, are projected horizontally
onto a pseudo-scale set off to the right-hand side of the actual B locus.
By passing loci through common variable values on these scales the required

grid is formed. The ordinate of any point in the grid is therefore projected
horizontally across to the locus which forms the left hand edge of the B-A
grid. This process can, for a known intersection of the left-hand edge
of the A-A grid, be reversed if necessary to obtain A for a known 6,

and vice versa.

17
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The complete nomogram is depicted in Figure 7 with constructional details

omitted. The common locus K is represented by the ungraduated locus

located at the centre of the nomogram.

4.2 Graphical Design Example

For the purposes of illustration the maximum fibre stress is calculated
for the Table 2 motor using the derived variables given in Table 3.

The applied internal pressure is taken as that for first yield in the
case material assuming elastic conditions (see Section 2.1 .2). The
procedure is as follows:

a. Using the right-hand side of the nomogram determine the

intersection of the X = 0.5 and 6 = 1.82, interpolating as necessary.
Project the ordinate of this point horizontally to intersect the

left-hand edge of the $-X grid.

b. Construct an index line to pass through the final
intersection obtained in a. and the value 0.73 on the $ scale to
cut the locus positioned at the centre of the nomogram.

c. Construct a second index line, this time to pass through

the grid point corresponding to 6 - 1.77 and *, - 0.22 and the
intersection of the K locus determined in b. to obtain the required
0 efmax

The maximun fibre stress of llOOMPa then follows from the simple relationship

(
0
fmax - oefmax x cy . This is in good agreement with the numerical

value of 1069MPa and consistent with the approximations made in Equation

44. The UTS of the fibre used in this example (Tab 2) is 2400HPa.

5 COICWSIOS

Charts have been presented for use in the design of a metallic cylinder

reinforced with a viscoelastic fibre overwind. Topics considered include:

a. Determination of the pressure for first yield in the

metallic case at short- and long-times.

b. Determination of the optimised configuration for short-
and long-times.

c. Determination of the maximum fibre stress.

Examples have been given with each nomogram for a particular component;

derived results compare favourably with exact numerical results.

18
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7 NMENC ATURE

Variables

A,A(-) defined by Equations 3 and 30 respectively
EE(-) short- and long-term Young's modulus values respectively
Fi(An) defined by Equation 4
n number of fibre layers
p internal pressure
RRe internal case radius and effective nozzle radius respectively
t thickness

C strain
v Poisson's ratio
a stress

Derived Variables

p applied/maximum pressure ratio (see Eqn 9)
a fibre viscoelastic modulus parameter (see Eqn 34)

B stiffness parameter (see Eqn 7)
y stiffness-fibre modulus parameter (see Eqn 37)
a constituent materials modulus ratio Ef/Ec
K auxiliary variable (see Eqn 47)
X radius parameter (see Eqn 8)
# auxiliary variable (see Eqn 20)

*W non-dimensional winding parameter (see Eqn 10)

Subscript

f,c fibre and case respectively

max maximum
opt optimum
p due to pressurisation
uts ultimate tensile strength
w winding

y at first yield
*,z circumferential and axial directions respectively

Superscript

(i,n) i'th fibre of n fibre layers
(n) n fibre layers

Accent

a non-dimensional

20
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TABLE 1 Typical Ranges of fbn-Dimensional Variables

Values
Min may

tbn-dimensional winding parameter fw 0 1.5
case pre-stress 0w 0 1.0

Applied/maximum pressure ratio p 0 1.0
Radius parameter A 0 1.0
Stiffness parameter 0 0 5.0
Fibre viscoelastic modulus ratio C 0 1.0
Stiffness-fibre modulus parameter y 0 15.0
Constituent materials modulus ratio 6 0 4.0
Ibn-dimensional maximum fibre stress cofmax 0 15.0

TABLE 2 Sample Motor Case Details

Fibre moduli Short term Ef(0) 124GPa
Long term Ef(.) 62GPa

Fibre UTS Outs 240OMPa

Case Young's modulus Ec 70GPa

Case yield stress vy 470MPa

Thicknesses fibre tf O.1mm
case tc 1.95mm

Radii Motor R 46.0mm
Effective Re 32.53mm

Winding strain S 1.5 x 10
-3

Nimber of layers n 20

TABLE 3 Derived Variables for Table 2 Motor

lbn-dimensional winding parameter O 0.22
Radius parameter A 0.5
Stiffness parameter 0 1.82
Fibre viscoelastic modulus ratio a 0.5
Stlffness-fibre modulus parameter y 3.82
Constituent materials ratio 6 1.77
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ANNEX A

DETERMINPLNT THEORY FOR VnIOGRAM CONSTRUCTION

If the coordinate point xl,yl is represented parametrically in terms of
a, ie

Xl - xj(a) Yl " yl(a)
(Al)

a curve is defined in the x-y plane. Furthermore, if a is specified the
corresponding point on the curve is determined. Consequently the curve
can be graduated in terms of the parameter a.

Similarly, two further curves can be defined parametrically by the
equations

x2 - x2 (b) Y2 = Y2 (b)
(A2)

x3 " x3(c) Y3 - Y3(c)
(A3)

and graduated in terms of the parameters b and c respectively.

If the three coordinate points xl,yl, x2,Y 2 and x3,Y3 are to be co-linear it is a requirement that the gradient of the line joining xl,y1
and x2 ,Y2 is the same as that of the line joining xl,y1 and x3 ,Y3 ie

Y2-Yl . Y3-Yl

(A4)

which, on expanding, and using the parametric relationships defined above
gives

xl(a)(Y2 (b)-Y 3 (c)} + x2 (b)(Y 3 (c)-Yl(a)} + x3(c){y(a)-Y2 (b)} - 0
(AS)

This equation can also be expressed in determinant form (Ref 7) as

xl(a) yl(a) 1

x2 (b) Y2 (b) 1 - 0
(A6)

x 3 (c) y 3 (c) 1

The characteristics of the determinant in Equation A6 are:

a. its value is zero,
b. each row contains one parameter only,
c. each element in the last row is equal to unity.

Al
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It is now necessary to regard the parameters a, b and c in Equation A6

as the variables of a three-variable equation. If (and only if) such an

equation can be reduced to a determinant of the form of Equation A6, it
follows that a solution to the equation can be obtained from the points
of intersection of any straight line with the three graduated curves
given by Equations Al, A2 and A3, le a nomogram can be constructed. The
form of the curves in the nomogram is determined by the elements of the

corresponding row in the determinant (Ref 7).

If, in Equation 40, f(a) is represented by x and f2(4w) by y, then the
following three simultaneous equations may be written

x - fj(Q)

Y - f2(*w)
(A7)

x + f3( A,)y - f4(8)

ie

x + Dy - fl(n) - 0

Ox + Y - f2(*%) - 0
(A8)

x + f3(X,B)y - f4 (B) = 0

The condition for a non-trivial solution of Equation A8 is

1 0 -fl(M)

0 1 -f 2 (4) =0
(A9)

I f 3 (X,6) -f4( )

This determinant is not of the same form as that of Equation A6, but by

applying standard determinant operations (Ref 7), the following transformed
version can be derived

-1/fl(d) 0 1

0 -1/f 2(4) 1 - 0
(AlO)

-1/f4 (0) -f3(X,B)/f4(B) 1

where X is considered to be a constant.' Equations A6 and A10 are now of

the same form. Consequently, it can be concluded that Equation 40 can be
represented nomographically as detailed in the main text following Equation
42.

Further transformations of Equation A1O can also be performed leading to
different determinant forms, but these have not led to significantly better
nomographic representation of Equation 40.
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